
Placeholder for .NET topics

Blazor

URL: Passing variables

MAUI - IOS Emulator / Building without MAC
MAUI - physical IPhone deployment (without Mac)
MAUI - Connect IPhone to debug
Visual studio project version
Azure

Pipeline - building offline packages

IIS Rewrite URL - basepath
Get Path of MSBUILD

.NET Development

Blazor

Blazor

Add the path

Bind the parameter

It should be said that via the easy mix of code between the server and the GUI - this approach to
pass variables might not the best way.
But it could be used to implement an external facing URL, for example.

You'd then assign a variable with the @onclick - where the @-sign denotes it will be run on the
server.

It then allows you to write code that renders different HTML.

URL: Passing variables

@page "/reader/{Id:int}"

[Parameter]
public string Id { get; set; }

https://wiki.sophior.com/uploads/images/gallery/2024-10/zAzimage.png
https://wiki.sophior.com/uploads/images/gallery/2024-10/yYnimage.png

It seems nearly impossible to run an Iphone emulator without a Mac or Iphone device.
You could invest in a Mac / Macbook or reason to get something cheap refurbished for a few builds.

But for my development, http://www.macincloud.com was sufficient and quite fast to continue my
work.
Just make sure to get the option to SSH - so you can pair your "Mac in the cloud" to your Visual
studio.

Use the credentials that come with the subscription.

MAUI - IOS Emulator /
Building without MAC

http://www.macincloud.com
https://wiki.sophior.com/uploads/images/gallery/2024-10/shRimage.png

Once it is paired, you then can debug on an Iphone Emulator

https://wiki.sophior.com/uploads/images/gallery/2024-10/pj1image.png

In some cases the MacInCloud isn't sufficient: to test BLE devices you do need a physical device,
for example.

In that case, you can get a cheap Iphone SE2020 or simular - unfortunately you cannot link that
phone over RDP (your macincloud) to its USB to deploy via Visual Studio.

1) You'll have to install Itunes and get a developer account
2) You'll have to activate your developer account (which is 99€ annually)

MAUI - physical IPhone
deployment (without Mac)

https://swappie.com/be/model/iphone-se-2020/
https://support.apple.com/en-us/118290
https://wiki.sophior.com/uploads/images/gallery/2024-10/ssKimage.png

According to Microsoft, an Itunes installation on Windows is enough to target the phone.

However, after some days of debugging (and setting up a virtual machine to generate keys
instead) - it turns out that it's a functionality that's broken. Either by Apple or Microsoft.

At time of writing (November 2024) - it hasn't been resolved.

https://developercommunity.visualstudio.com/t/Cannot-add-Apple-Account-VS-2002-
Enter/10773193

MAUI - Connect IPhone to
debug

https://wiki.sophior.com/uploads/images/gallery/2024-10/0climage.png

Define a post-build to create a version file

Visual studio project version

<Project Sdk="Microsoft.NET.Sdk">
 <PropertyGroup>
 <OutputType>Exe</OutputType>
 <TargetFramework>net8.0</TargetFramework>
 <ImplicitUsings>enable</ImplicitUsings>
 <Nullable>enable</Nullable>
 <GeneratePackageOnBuild>False</GeneratePackageOnBuild>
 <Version>1.2.3</Version>
 </PropertyGroup>
 <Target Name="GetVersion" AfterTargets="PostBuildEvent">
 <GetAssemblyIdentity AssemblyFiles="$(TargetPath)">
 <Output TaskParameter="Assemblies" ItemName="AssemblyInfo" />
 </GetAssemblyIdentity>
 <PropertyGroup>
 <VersionInfo>%(AssemblyInfo.Version)</VersionInfo>
 </PropertyGroup>
 <!--And use it after like any other variable:-->
 <Message Text="VersionInfo = $(VersionInfo)" Importance="high" />
 </Target>
 <Target Name="PostBuild" AfterTargets="PostBuildEvent">
 <!--
 <Exec Command="call $(SolutionDir)BuildScripts\PostBuild.bat $(TargetPath) $(VersionInfo)" />
 -->
 <Exec Command="echo $(VersionInfo)>$(TargetDir)\version.txt" />
 </Target>
</Project>

Azure

Azure

I had trouble linking packages in the pipeline which blocked building solutions.
The shortest path I could find, was to update configuration to look into my defined folder.
And get a zipfile from an online resource, and extract it into this folder.

Update the configuration

Define your pipeline task

Pipeline - building offline
packages

<?xml version="1.0" encoding="utf-8"?>
<configuration>
 <config>
 <add key="globalPackagesFolder" value=".\Packages" />
 <add key="repositoryPath" value=".\Packages" />
 </config>
 <packageSources>
 [....]

- task: PowerShell@2
 inputs:
 targetType: 'inline'
 script: |
 Invoke-WebRequest 'https://dl.dropboxusercontent.com/scl/fi/XXXXXXX8vl&dl=0' -OutFile
'$(Build.ArtifactStagingDirectory)/NuGetPackages.zip'
- task: ExtractFiles@1
 inputs:
 archiveFilePatterns: '$(Build.ArtifactStagingDirectory)/NuGetPackages.zip'
 destinationFolder: '.\Packages\NuGetPackages'

 cleanDestinationFolder: true
 overwriteExistingFiles: false

When you write a rewrite URL, and there is a subfolder, you will end up that the target application
might not know how to manage the relative paths.

1) Write in the App.razor some code to receive the BasePath

2) In the rewrite rule append the basepath

IIS Rewrite URL - basepath

https://wiki.sophior.com/uploads/images/gallery/2024-12/wNCimage.png

https://wiki.sophior.com/uploads/images/gallery/2024-12/image.png

Get Path of MSBUILD
reg.exe query "HKLM\SOFTWARE\Microsoft\MSBuild\ToolsVersions\4.0" /v MSBuildToolsPath

